If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2+7b+2=0
a = 2; b = 7; c = +2;
Δ = b2-4ac
Δ = 72-4·2·2
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{33}}{2*2}=\frac{-7-\sqrt{33}}{4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{33}}{2*2}=\frac{-7+\sqrt{33}}{4} $
| p−39=40 | | F(-9)=3x-19 | | 3w+14=28 | | 3/2(7x+10)=3 | | X/2+x/5=6 | | 25x+30=15x+60 | | (x+1)=(x-1)+x^2+3 | | 29-17=4(x-6) | | (x+7)+(12x-27)=123 | | 266=5(5+8n)+1 | | (x+1)=(x-1)+C^2+3 | | 10(x+2)=6(x+2)+4(x+2) | | 9x(x+6)–(3x+1)(3x+1)=1 | | 3/4(10x+16)=6 | | 16x+9=27 | | -2-3(x+11)=22 | | 2(x-1)=6x-3 | | 5+3(x+6)=6+(3x+18) | | 5x-3(-x-13)=-49 | | (A+6)+b=50 | | 23=y+14 | | 23=14y | | A+6+b=50 | | 5x+2(4x-2)=74 | | 3(3+x)=13+x | | 4(x+16)=-12 | | 1/2x-1/4=9/2 | | 3/5=1/2-3/2x | | |2x-4|=|2x-9| | | 44=2s | | 2(3x-8)+1=6x-15 | | -7y+15=-5(y-5) |